,其中积分区域D由,及轴围成 的平面有界区域 
来源:学生作业帮助网 编辑:作业帮 时间:2024/09/16 21:45:21
∫∫(x+y)^2dxdy=∫∫(x²+y²+2xy)dxdy=∫∫(x²+y²)dxdy(这里由于函数2xy关于x为奇函数,区域D关于y轴对称,所以∫∫2xy
把球面参数化x=2sinucosvy=2sinusinvz=2cosu|J|=2^2*sinv=4sinv0再问:我这样理解对吗:因为这个是球面,所以只要对θ,φ求积分,r是常数?还有如果就在Oxyz
答:设极坐标x=cosθ,y=sinθ,1
{z=-√(x²+y²){z=-1-1=-√(x²+y²)x²+y²=1-->r=1切片法:∫∫∫zdV=∫(-1→0)zdz∫∫Dzdxd
oh,mygod,你看看高教第五版配套辅导教材,三重积分那一章的讲解,好像有这套例题
y=x=>θ=π/4y=x^4=>rsinθ=(rcosθ)^4=>r^3=sinθ/(cosθ)^4=>r=[sinθ/(cosθ)^4]^(1/3)I=∫[0->π/4]∫[0->[sinθ/(c
看了你的题,我想,你可能题写地有错误,把加号都给省了,我按猜测的正确题目,试答如下:
令x=cosθ,y=sinθ由题,I=∫(-π/2,π/2)dθ∫(cosθ,1)r^2dr+∫(π/2,3π/2)dθ∫(0,1)r^2dr=(π/3-4/9)+π/3=2π/3-4/9没有公式编辑
先求旋转曲面的方程设旋转曲面上一点是(x0,y0),yoz面上的曲线为y^2=2z,则√(x0^2+y0^2)=y得旋转曲面的方程为:z=(x^2+y^2)/2z=(x^2+y^2)/2=5得Dxy:
∫∫_D√(y-x²)dxdy=∫(-1-->1)dx∫(0-->2)√(y-x²)dy=∫(-1-->1)dx∫(0-->2)√(y-x²)d(y-x²)=∫
因为格林公式里对dx之前的一项求关于y的偏导的时候是有负号的,所以如果是ydx的话,要是负的才行.
被积分函数的不用管了吧都是∫∫f(rcosθ,rsinθ)rdrdθ1.代入x=rcosθ,y=rsinθ则,
首先围成的是下边是一个抛物面体上部是球的部分,让z1=z2,则交界处的交线方程是x^2+y^2=4,且对应的z=2,因为dv=r^2sinadado(a为r与z轴夹角,o为在xoy面内投影与x轴夹角)
看图片,不懂再问.再问:谢谢,我先看看
这道题用极坐标变换便不好做,因为积分范围真的是不好确定. 应该是用积分变化.令y=y,和z=y-x,这时有范围a再问:这个方法懂的。是正确答案,谢谢啦只是老师要求用极坐标做啊……再答:极坐标的不好写
X区域:D:x=2,y=1,y=x==>1≤x≤2,1≤y≤x∫∫_Dxydxdy=∫(1→2)dx∫(1→x)xydy=∫(1→2)[xy²/2]:(1→x)dx=∫(1→2)(x
9/8再问:给我完整的过程好吗?
=∫[0,2]dx∫[0,2-x](3x-2y)dy=∫[0,2][3x(2-x)-(2-x)^2]dx=∫[0,2][-x^2+10x-4]dx=32/3