对V内任一线性变换A,存在一个次数小于等于n2的多项式f(),使f(A)=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/30 13:57:16
对V内任一线性变换A,存在一个次数小于等于n2的多项式f(),使f(A)=0
对任一n阶实方阵A,给定n阶实方阵C定义如下;T(A)=CA-AC;证明(1) T是R(n*n)维空间的线性变换,

(1)线性变换T(a+b)=T(a)+T(b)C(a+b)-(a+b)C=Ca-aC+Cb-bC,且T(ka)=kT(a)C(ka)-(ka)C=kCa-kaC.所以,T是R的线性变换.(2)T(AB

正交变换的证明题证明:A是n维欧式空间V的一个线性变换,若A在任一组标准正交基下矩阵是正交矩阵,那么A是正交变换.

根据定义,要证明是正交变换,只要证明该变换保持内积不变就行了.设a,b是V中的两个向量,a在标准正交基下的坐标是X=[x1,x2,...,xn]'('表示转置)b在标准正交基下的坐标是Y=[y1,y2

数域P上n维线性空间V的一个线性变换A称为幂零的,如果存在一个正整数m使A^m=0,证明A是幂零变换当且仅当它的特征多项

A为幂零变换的充分必要条件是A在任意基下的矩阵A是幂零矩阵.问题转换为“A为幂零矩阵的充分必要条件是A的特征值全为0.”再问:谢谢你。再答:不客气。

线性变换:设A是数域P上偶数维线性空间V上的线性变换,那么A与-A具有相同的( )

选B:行列式.再问:为什么呢?再答:因为A和-A在同一基下的矩阵B,C满足:B=-C.取行列式有|B|=|-C|=(-1)^n*|C|=|C|.

高等代数 线性变换A^2=E,证明A可对角化

只需证明A的特征向量中能够选出n为向量空间的一组基:(不妨设A是n行n列的)首先设λ是A的特征值,那么λ^2是A^2的特征值,∴(A^2)ξ=λ^2*ξ=Eξ=ξ∴λ^2=1∴λ=±1∴A只有特征根±

设A是线性空间V的一个线性变换,证明下列两个条件是等价的:A把V中某一线性无关的向量变成一组线性相关的

(1)到(2)a1,...,as线性无关Aa1,...,Aas线性相关则存在一组不全为0的数使得k1Aa1+...+ksAas=0所以A(k1a1+...+ksas)=0因为a1,...,as线性无关

设σ是欧式空间V的一个线性变换,证明:σ是正交变换的充要条件是对V的任意向量=.

注意σ(ζ)=0等价于0==,即ζ=0用上述性质直接验证σ是线性变换即可:σ(ζ+η)-σ(ζ)-σ(η)=0σ(kζ)-kσ(ζ)=0

急求证线性代数一题!给定一个方阵A,求证存在一个多项式f(x),使f(A)=0.注:这题出现在线性变换的练习中.

写出方程|A-xE|=0,其中b是系数,E是单位矩阵,左边行列式展开是多项式,把这个多项式记做f(x),即所求(这是一个定理,证明难度很大,这里就不证了)

设A为数域P上的n维线性空间V的线性变换,且A^2=A

(1)两个子空间的和是直和只需要证明它们的交只有零向量.设Y∈ker(A)∩im(A),则AY=0且存在X使Y=AX.∵A²=A,∴Y=AX=A²X=A(AX)=AY=0.即ker

设б是实数域上F上n维向量空间V的一个线性变换,且V中存在向量ξ,满足:б的(n-1)次幂不等于0,

A^(n-1)a≠0,A^na=0说明a,Aa,...,A^(n-1)a线性无关A在这组基下的矩阵为00...0010...0001...00......00...10特征值全是0但r(A)=n-1,

问刘老师,设a为线性空间V的一个线性变换,A为a在某组基下的矩阵

特征值的和等于矩阵的迹tr(A)=a11+a22+...+ann

v是数域p上的n维线性空间,T是v的线性变换.证明,存在v的线性变换S,使得TST=T

不太会证,用矩阵的语言说明思路吧.矩阵T的等价标准型为D=【E0;00】,其中E是单位阵,阶数是T的秩,也就是变换T的像空间的维数.故存在可逆矩阵P,Q使得PTQ=D,令S=QP,则TST=P^(-1

A是线性空间V的一个线性变换,试证如果α,Aα,…A∧k-1α线性无关,而α,Aα,…A∧kα线性相关,那么L(α,Aα

将A作用于L(α,Aα,…A∧k-1α)的基得到Aα,…A∧kα,由于α,Aα,…A∧kα线性相关,所以Aα,…A∧kα均能够由α,Aα,…A∧k-1α线性表出,所以是A-不变子空间;假设U为A-不变

设T是V的一个线性变换,如果T^(k-1)*α≠0,但T^k*α=0,证明a,Ta,.T^(k-1)a线性无关

证明:若存在k0,k1,...,k(n-1),使得:k0a+k1Ta+...+k(n-1)T^(k-1)a=0由于T^(k-1)a≠0,等式两端同时作用T^(k-1)得:k0T^(k-1)a=0=>k

定理证明怎样证明:如果e1,e2是同一平面内的两个不共线向量.那么对于这一平面内的任一向量a,仅存在一对实数λ1,λ2,

通过课本的论述,已经知道平面内任一向量a,可以写成a=λ1e1+λ2e2(λ,μ∈R)的形式,这事实上是证明了λ1、λ2的存在性.下面给出唯一性的证明:(用反证法).假设a=λ1e1+λ2e2,又有a

37.设σ是F上n维线性空间V的一个线性变换.证明:1.在F[x]中存在次数≤n2的非零多项式f(x),使f(σ)=0

σ作为V中的线性变换,我们考虑其在基下的矩阵A,显然是个n阶方阵.我们取A的特征多项式f(x),显然f(x)∈F[x],且根据Hamilton-Cayley定理有f(A)=0,进而f(σ)=0.并且f

设A为数域P上的线性空间V的线性变换,证明:

用反证法.若λ=0是特征值,ξ是对应的特征向量,那么:   Aξ=λξ=0于是,一方面:A^(-1)[Aξ]=A^(-1)[0]=0另一方面:A^(-1)[Aξ]=[A^