A为n*n阶矩阵,A2-3A 2E=0则(A E)-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/16 14:57:02
A为n*n阶矩阵,A2-3A 2E=0则(A E)-1
设A为n阶正定矩阵,a1,a2.am为n维非零列向量,且ai^TAaj=0(i≠j),证明:a1,a2.am线性无关(大

设∑ki*ai=0(对i求和),则(∑ki*ai)^TAaj=0(j=1,2,...,m),即kj*(aj^TAaj)=0,(j=1,2,...,m);而A正定,所以aj^TAaj>0,从而kj=0(

设A为n阶实对称矩阵,且满足A3+A2+A=3E,证明A是正定矩阵.

假设 λ 为A的特征值,因为A3+A2+A=3E,所以 λ3+λ2+λ-3=0.即 (λ3-1)+(λ2-1)+(λ-1)=0,得(λ-1)(λ2+2λ+3)=0.解得,

已知n阶矩阵A满足A2-3A+2I=0,其中I是n阶单位矩阵,且A的特征值全为1,求证A=I

显然x^2-3x+2是A的一个零化多项式,无重根,这说明A的极小多项式无重根,因此A可对角化.而A的特征值全为1,说明A相似于单位阵E.所以A=P^{-1}EP=E

已知A,B均为N阶矩阵,且A2-AB=E,证明R(AB-BA-A)=N

∵A(A-B)=A²-AB=E.∴A可逆,且A^(-1)=A-B,即有B=A-A^(-1).∴BA=A²-E=AB,则AB-BA+A=A.又∵A为N阶可逆矩阵,∴r(AB-BA+A

如n阶矩阵A满足A2=A,证明:A的特征值只能为0或-1

题目错了,应该是0或1.设Ax=λx,x是非零向量,则0=(A^2-A)x=(λ^2-λ)x,于是λ^2-λ=0,从而λ=0或1.我看到你连续问了好几道基本的问题,建议你好好看看书,这些已经是最简单的

线性代数证明题A为n阶矩阵,a1,a2,a3是n维向量,且a1不等于0,Aa1=a1,Aa2=a1+a2,Aa3=a2+

把3个式子统一起来,写成矩阵形式:A*[a1a2a3]=[a1a2a3]*110011001记P=[a1a2a3],J=110011001(其实J就是一个特征值为1的三阶Jondan块).则有AP=P

设n阶可逆矩阵A的一个特征值是-3,则矩阵(1/3*A2)-1 必有一个特征值为_________.

有如下定理:若可逆阵A有特征值k(k一定不为0)则A逆有特征值1/k,A^2特征值k^2.(mA)有特征值mk.(以上结论容易证明)由此,本题:A的特征值-3,A^2的特征值9,1/3*A^2的特征值

设a1,a2为n维列向量,A为n阶正交矩阵,证明[Aa1,Aa2]=[a1,a2]

因为A为正交矩阵所以A^TA=E.所以[Aa1,Aa2]=(Aa1)^T(Aa2)=a1^TA^TAa2=a1^Ta2=[a1,a2]

设a1,a2为n维列向量,A为n阶正交矩阵,证明:(1)[Aa1,Aa2]=[a1,a2] (2){Aa1}={a1}

1、=(Aa1)^T*(Aa2)=(a1)^T*A^T*A*a2=(a1)^T*(a2)=.2、取a2=a1,由1有||Aa1||^2=||a1||^2.开方得结论.

设A为n阶矩阵,a1,a2,...an为n维列向量,an!=0,Aa1=a2,...Aan=0,求证

先用线性无关的定义验证a1,a2,...,an线性无关然后记X=[a1,a2,...,an],那么X是非奇异矩阵且满足X^{-1}AX=J,其中J=0000010000010000010000010是

设A为实数域上的n阶对称矩阵,且满足A2=0,求证:A=0

两侧的括号省略设A=abbca,bc均为实数.A^2=AA=ababbc乘bc按定义:AA=a^2+b^2ab+bcab+bcb^2+c^2由已知:A^2=0,即各元素均为0.得:a^2+b^2=0,

设n阶矩阵A满足A2+3A-2E=0.证明A可逆,并且求A的逆矩阵.

A²+3A-2E=0,所以A²+3A=2E,即A(A+3E)=2E,于是A(A/2+3E/2)=E,显然A为n阶方阵,而A和A/2+3E/2是同阶方阵,而两者相乘为E,所以由逆矩阵

设A为n阶矩阵,满足A2=A,设A为n阶矩阵,满足A2=A,试证:r(A)+r(A+I)=n

(结论应该是rank(A)+rank(A-I)=n,否则是错的.例:取A=I,则A^2=I=A,但rank(A)+rank(A+I)=rank(I)+rank(2I)=n+n=2n)证法一:令U={x

n阶非奇异矩阵A的列向量为a1,a2...an,n阶矩阵B的列向量为b1 b2...bn若b1=a1+a2...bn=a

n为偶数时:b1-b2+b3-b4+……-bn=0∴﹛b1,b2,……bn﹜线性相关.设k1b1+k2b2+……+k﹙n-1﹚b﹙n-1﹚=0即k1a1+﹙k1+k2﹚a2+﹙k2+k3﹚a3+……+

证明对于n阶矩阵A,若R(A)=n,则R(A2)=n

(A)=n,说明矩阵A时可逆矩阵,因此A可以写成一系列初等矩阵的乘积,设A=p1*p2ps,相当于对矩阵A做了一系列的初等列变换,而初等列变换不改变矩阵的秩,因此r(A*A)=r(A)其实还可以简单点

矩阵论证明题设A,B为复空间的n阶矩阵,A、B的特征值分别为a1,a2,...,an和b1,b2,...,bn,用Sch

一个活人.”  就这样,他把悬在衣领上的阿·摩斯柯特先生沿着街道中间拎了过去,在马孔多到沼泽地的路上他才让他双脚着地.

n阶实对称幂等矩阵A(即A2=A)它的秩为r,求标准型

设a是A的特征值则a^2-a是A^2-A的特征值因为A^2-A=0所以a^2-a=0所以a=1或a=0即A的特征值只能是1或0.又因为A为实对称矩阵,所以A必可正交对角化即存在正交矩阵T满足T^-1A