如图,直角三角形内接于圆O,点O是直角三角形斜边AB上的一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/14 05:07:34
如图,直角三角形内接于圆O,点O是直角三角形斜边AB上的一点
如图,在直角三角形ABC中,角ACB=90°,以AC为直角边的圆O与AB边交于点D,过点O作圆O的切线,交BC于点E,

连接CD∵∠ACB=90°,AC为⊙O直径,∴EC为⊙O切线,且∠ADC=90°;∵ED切⊙O于点D,∴EC=ED,∴∠ECD=∠EDC;∵∠B+∠ECD=∠BDE+∠EDC=90°,∴∠B=∠BDE

如图,三角形ABC内接于圆O,弦AD垂直AB交BC于点E,过点B作圆O的切线交DA的延长线于点F,且角ABF=角ABC.

(1)∵∠ACB=∠ABF=∠ABC,(圆周角等于弦切角)∴AB=AC(底角相等的三角形是等腰三角形).(2)连接DB,∵∠ADB=∠ABF=∠ABC,∴△ADB∽△ABE.∵AD=4,cos∠ABF

如图,三角形ABC内接于圆O,AE是圆O的直径,AD垂直BC于点D,角BAE于角CAD相等吗?

相等∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D,DE⊥AB于点E且交AC于点P

连AD∠CAD=∠CBD=∠ABD∠ADB=90所以有三角形ABD相似于三角形AFDAB/AF=AD/DF=10/7.5=4/3tan∠ABF=tan∠FAD=3/4

如图,△ABC内接于圆O,AE是圆O的直径,AD⊥BC于点D.∠BAE与∠CAD相等吗

∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠C+∠CAD=90∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD

如图,已知矩形ABCD内接于圆O,圆O的半径为4,AB=4,将矩形ABCD绕点O逆时针旋转.

因为A,B,C,D四点共圆且矩形的对角线相等并且互相平分,即OA=OB=OC=OD,无论怎么绕着O点旋转,结果仍然四点在圆上且为矩形,形状大小都不变.因为0A=0B=AB=4,由勾股定理求出AD=BC

4.如图,已知内接于圆O,点在的延长线上,是⊙O的切线,若,,则的长为 .

解题思路:由已知条件推导出△AOC是一个等边三角形,且OA=OC=3,由此在直角△AOD中,能求出OD=2AO=6.解题过程:

已知:如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D

图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠

已知:如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D,DE⊥AB于点E且交AC于点

(1)∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠D

几何证明选讲5.如图,三角形ABC是圆O的内接三角形,PA是圆O 的切线,A为切点,PB交AC于点E ,交圆O 于点D

因为PA是圆O的切线,A为切点,所以角PAC=弧ADC所对的圆周角=角ABC=60度,又因为PE=PA,所以三角形PAE是等边三角形.PA^2=PD*PB=1*(1+8)=9PA=PE=AE=3DE=

已知:如图,△ABC内接于圆O,AB为直径,∠CBA的角平分线交AC于点F,交圆O于点D,DE⊥AB于E,且交AC于P,

(1)证明:∵AB为直径,∴∠ACB=∠ADB=90°∵BD平分∠ABC∴∠CBF=∠FBA∵∠DAF+∠AFD=90°∠CBF+∠BFC=90°∠AFD=∠BFC(对顶角相等)∴∠DAF=∠CBF=

如图,直角三角形ABC内接于圆O,角ACB=90度,CD垂直于AB于点D,CE平分角OCD.(1)

∵OA=OC∴∠OAC=∠OCA又∠OAC+∠ABC=90而∠DCB+∠ABC=90∴∠OAC=∠OCA=∠DCB而CE平分∠OCD则∠ACE=∠OCA+∠OCE=∠BCD+∠DCE=∠BCE则弧AE

如图 三角形ABC内接于圆O AB是圆O直径 CD平分角ACB交圆O于点D 交AB于F 弦AE垂直CD于H 连CE OH

∵∠ACB=90°(直径对直角)∵CD是角平分线∴∠FCB=∠FCA=45°∵AE垂直CD于H∴∠CAH=45°∴∠CAH=∠FCB又∵∠B=∠E(同弦对等角)∴三角形ACE相似于三角形CFB

已知:如图,△ABC是○O的内接三角形,角ACB的平分线交圆O于点D,过点D作圆O的切线L.求证AB平行于l.

证明:连接AD,BD因为DC平分∠ACB所以∠ACD=∠BCD所以弧AD=弧BD所以点D是弧ADB的中点连接OD,根据垂径定理OD⊥AB因为L是切线所以OD⊥L所以AB‖L(同垂直于一条直线的2条直线

如图,已知△ABC内接于圆O,AD平分∠BAC交圆O于点D,过D作圆O的切线与AC的延长线交于点E.(1)求证:BC平行

证明:1)连接OD因为DE与圆O相切于D所以DO⊥DE因为AD平分∠BAC所以弧BD=弧DC所以DO⊥BC(根据垂径定理)所以DE∥BC2)因为弧BD=弧DC所以DC=BD=2因为DE∥BC所以∠E=

如图,△ABC内接于⊙O,AB是⊙O的直径,CD平分∠ACB交⊙O于点D,交AB于点F,弦AE⊥CD于点H,连接CE、O

1个用45度角可以证,第二个OH=1再问:请问,是怎么证明第二问的,能给个提示吗再答:延长CB与AE相交然后利用等边直角三角形可以求,不懂可以再问我哈

如图,△ABC内接于圆O,过点A的直线交圆O于点P ,交BC的延长线上于点D,AB2=AP×AD.1.求证AB=AC 2

由题意AB/AP=AP/AB所以三角形ABD相似于三角形APB所以∠ABD=∠APB弧AB所对的角为∠APB和∠ABC所以∠APB=∠ACB∴∠ABD=∠ACBAB=AC∠APB和∠ABC对同弦AC∴